Material Detail

The Stability of the Contour of an Orientable 2-Manifold

The Stability of the Contour of an Orientable 2-Manifold

This video was recorded at Machine Learning Summer School (MLSS), Chicago 2009. Think of the view of the boundary of a solid shape as a projection of a 2-manifold to R^2. Its apparent contour is the projection of the critical points. Generalizing the projection to smooth mappings of a 2-manifold to R^2, we get the contour as the image of the points at which the derivative is not surjective. Measuring difference with the erosion distance (the Hausdorff distance between the complements), we prove that the contour is stable. Along the way, we introduce the by now well established method of persistent homology, including the stability of its diagrams, as well as an extension using zigzag modules. Joint work with Dmitriy Morozov and Amit Patel.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.